16 research outputs found

    System for 3D Visualization of Flaws for Eddy Current Inspection

    Get PDF
    This paper presents a novel method for 3D visualization of flaws detected during Eddy Current (EC) inspection. The EC data was acquired using an automated scanning system equipped with precise eddy current probe positioning. The method was tested on a single frequency instrument with an absolute probe. The EC inspection procedure is implemented statically by registering the operating point of the instrument at each equidistant point on a tested object.The paper describes a data processing method based on the Fourier transform enabling 3D visualization of flaws. This three-dimensional image of the result of a scan enables the position of flaws to be determined, and the size and bevel (angle to the surface) of each detected flaw to be estimated. This research investigated flaws rising from the surface of the tested object, and flaw depth was not evaluated in this work. This method of visualization is simple to implement and is currently targeted for application in EC scanning devices.

    System for 3D Visualization of Flaws for Eddy Current Inspection

    Get PDF
    This paper presents a novel method for 3D visualization of flaws detected during Eddy Current (EC) inspection. The EC data was acquired using an automated scanning system equipped with precise eddy current probe positioning. The method was tested on a single frequency instrument with an absolute probe. The EC inspection procedure is implemented statically by registering the operating point of the instrument at each equidistant point on a tested object.The paper describes a data processing method based on the Fourier transform enabling 3D visualization of flaws. This three-dimensional image of the result of a scan enables the position of flaws to be determined, and the size and bevel (angle to the surface) of each detected flaw to be estimated. This research investigated flaws rising from the surface of the tested object, and flaw depth was not evaluated in this work. This method of visualization is simple to implement and is currently targeted for application in EC scanning devices.

    Evaluation of Methods used for Separation of Vibrations Produced by Gear Transmissions

    Get PDF
    This paper evaluates methods used for separating vibrations produced by a gear transmission from the vibration signal acquired on the gearbox. The paper presents a novel method for evaluating the algorithms used for this separation. The evaluation method takes into account the statistical reliability of the results achieved on multiple sets of signals acquired on the same machine and conditions. The signal separation was applied in order to process data obtained during an experiment carried out with the aim of analyzing the influence of a torque load affecting a gearbox on the vibrations produced by the gear transmission. It is supposed that the vibration characteristics of the gear transmission are strongly affected by the value of the torque load influencing the gearbox shafts. This influence is analyzed using the vibration signal acquired on the gearbox housing. The vibration signal contains significant disturbances, and its interpretation is unclear. The vibration signal generated by the gear transmission can be separated using methods that make it possible to select the valid features included in the signal. Methods for feature selection which implement a systematic search in the state space and methods based on the genetic algorithm were applied. The genetic algorithm poses a robust stochastic global search in the state space that is well suited to deal with nonlinear problems and also shortens the necessary computing time. The evaluation and comparison of the results achieved during the separation process using different methods have to be taken into account. In the case of signal separation, it is important to evaluate differences between the results achieved during particular executions of the separation process performed by the same method on different datasets which were acquired in the case of the same experiment and conditions. Methods with results that vary, or that are different from the results given by other methods, are assumed not to be statistically reliable. It is also necessary to penalize methods leading to results that can vary greatly in some executions according to the scatter data. Conversely, methods that give results varying around the right set of features seem more acceptable. A novel method for rating the statistical reliability of the results has been proposed. This method is essential for methods using a stochastic search in the state space.

    Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs

    Get PDF
    Abstract Background Lead is well known environmental pollutant, which can cause toxic effects in multiple organ systems. However, the influence of lead oxide nanoparticles, frequently emitted to the environment by high temperature technological processes, is still concealed. Therefore, we investigate lead oxide nanoparticle distribution through the body upon their entry into lungs and determine the microscopic and ultramicroscopic changes caused by the nanoparticles in primary and secondary target organs. Methods Adult female mice (ICR strain) were continuously exposed to lead oxide nanoparticles (PbO-NPs) with an average concentration approximately 106 particles/cm3 for 6 weeks (24 h/day, 7 days/week). At the end of the exposure period, lung, brain, liver, kidney, spleen, and blood were collected for chemical, histological, immunohistochemical and electron microscopic analyses. Results Lead content was found to be the highest in the kidney and lungs, followed by the liver and spleen; the smallest content of lead was found in brain. Nanoparticles were located in all analysed tissues and their highest number was found in the lung and liver. Kidney, spleen and brain contained lower number of nanoparticles, being about the same in all three organs. Lungs of animals exposed to lead oxide nanoparticles exhibited hyperaemia, small areas of atelectasis, alveolar emphysema, focal acute catarrhal bronchiolitis and also haemostasis with presence of siderophages in some animals. Nanoparticles were located in phagosomes or formed clusters within cytoplasmic vesicles. In the liver, lead oxide nanoparticle exposure caused hepatic remodeling with enlargement and hydropic degeneration of hepatocytes, centrilobular hypertrophy of hepatocytes with karyomegaly, areas of hepatic necrosis, occasional periportal inflammation, and extensive accumulation of lipid droplets. Nanoparticles were accumulated within mitochondria and peroxisomes forming aggregates enveloped by an electron-dense mitochondrial matrix. Only in some kidney samples, we observed areas of inflammatory infiltrates around renal corpuscles, tubules or vessels in the cortex. Lead oxide nanoparticles were dispersed in the cytoplasm, but not within cell organelles. There were no significant morphological changes in the spleen as a secondary target organ. Thus, pathological changes correlated with the amount of nanoparticles found in cells rather than with the concentration of lead in a given organ. Conclusions Sub-chronic exposure to lead oxide nanoparticles has profound negative effects at both cellular and tissue levels. Notably, the fate and arrangement of lead oxide nanoparticles were dependent on the type of organs

    Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs

    No full text
    Abstract Background Lead is well known environmental pollutant, which can cause toxic effects in multiple organ systems. However, the influence of lead oxide nanoparticles, frequently emitted to the environment by high temperature technological processes, is still concealed. Therefore, we investigate lead oxide nanoparticle distribution through the body upon their entry into lungs and determine the microscopic and ultramicroscopic changes caused by the nanoparticles in primary and secondary target organs. Methods Adult female mice (ICR strain) were continuously exposed to lead oxide nanoparticles (PbO-NPs) with an average concentration approximately 106 particles/cm3 for 6 weeks (24 h/day, 7 days/week). At the end of the exposure period, lung, brain, liver, kidney, spleen, and blood were collected for chemical, histological, immunohistochemical and electron microscopic analyses. Results Lead content was found to be the highest in the kidney and lungs, followed by the liver and spleen; the smallest content of lead was found in brain. Nanoparticles were located in all analysed tissues and their highest number was found in the lung and liver. Kidney, spleen and brain contained lower number of nanoparticles, being about the same in all three organs. Lungs of animals exposed to lead oxide nanoparticles exhibited hyperaemia, small areas of atelectasis, alveolar emphysema, focal acute catarrhal bronchiolitis and also haemostasis with presence of siderophages in some animals. Nanoparticles were located in phagosomes or formed clusters within cytoplasmic vesicles. In the liver, lead oxide nanoparticle exposure caused hepatic remodeling with enlargement and hydropic degeneration of hepatocytes, centrilobular hypertrophy of hepatocytes with karyomegaly, areas of hepatic necrosis, occasional periportal inflammation, and extensive accumulation of lipid droplets. Nanoparticles were accumulated within mitochondria and peroxisomes forming aggregates enveloped by an electron-dense mitochondrial matrix. Only in some kidney samples, we observed areas of inflammatory infiltrates around renal corpuscles, tubules or vessels in the cortex. Lead oxide nanoparticles were dispersed in the cytoplasm, but not within cell organelles. There were no significant morphological changes in the spleen as a secondary target organ. Thus, pathological changes correlated with the amount of nanoparticles found in cells rather than with the concentration of lead in a given organ. Conclusions Sub-chronic exposure to lead oxide nanoparticles has profound negative effects at both cellular and tissue levels. Notably, the fate and arrangement of lead oxide nanoparticles were dependent on the type of organs

    Impact of acute and subchronic inhalation exposure to PbO nanoparticles on mice

    No full text
    <p>Lead nanoparticles (NPs) are released into air from metal processing, road transport or combustion processes. Inhalation exposure is therefore very likely to occur. However, even though the effects of bulk lead are well known, there is limited knowledge regarding impact of Pb NPs inhalation. This study focused on acute and subchronic exposures to lead oxide nanoparticles (PbO NPs). Mice were exposed to PbO NPs in whole body inhalation chambers for 4–72 h in acute experiment (4.05 × 10<sup>6</sup> PbO NPs/cm<sup>3</sup>), and for 1–11 weeks in subchronic experiment (3.83 × 10<sup>5</sup> particles/cm<sup>3</sup> in lower and 1.93 × 10<sup>6</sup> particles/cm<sup>3</sup> in higher exposure group). Presence of NPs was confirmed in all studied organs, including brain, which is very important considering lead neurotoxicity. Lead concentration gradually increased in all tissues depending on the exposure concentration and duration. The most burdened organs were lung and kidney, however liver and brain also showed significant increase of lead concentration during exposure. Histological analysis documented numerous morphological alterations and tissue damage, mainly in lung, but also in liver. Mild pathological changes were observed also in kidney and brain. Levels of glutathione (reduced and oxidized) were modulated mainly in lung in both, acute and subchronic exposures. Increase of lipid peroxidation was observed in kidney after acute exposure. This study characterized impacts of short to longer-term inhalation exposure, proved transport of PbO NPs to secondary organs, documented time and concentration dependent gradual increase of Pb concentration and histopathological damage in tissues.</p

    Additional file 1: of Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs

    No full text
    Calculation of deposited dose of PbO nanoparticles in the experiments. Figures S1, S2: The size distribution of nanoparticles with respect to the number of particles per unit volume in inhaled air and STEM images of PbO nanoparticles collected on TEM grids. Figures S3, S4: Weight of organs in the experiments. Figure S5: Effect of lead nanoparticles on spleen following 6 weeks exposure to PbO nanoparticles. Figure S6: Detection of proliferating cells in brain tissue. Tables S1, S2: Lead concentration in organs following 6 weeks exposure in the experiments. Tables S3, S4: Pathological changes in kidney, liver and lung in the experiments. (DOCX 4862 kb
    corecore